1053

Infrared Spectra and Molecular Parameters of Matrix-isolated Gallium(I), Indium(I), and Thallium(I) Oxides (Ga₂O, In₂O, and Tl₂O)

By A. J. HINCHCHLIFFE and J. S. OGDEN*

(Inorganic Chemistry Laboratory, South Parks Road, Oxford)

Summary The v_3 fundamentals are observed for ¹⁶O and ¹⁸O species, and these frequency ratios used directly to derive bond angles: principal stretching force constants are evaluated assuming a range of interaction constants, and the corresponding bond lengths estimated *via* the Laurie-Herschbach relationship.

In recent years the combined techniques of matrix isolation and i.r. spectroscopy have provided valuable structural information on high-temperature chemical species.¹ We describe part of an investigation into the vaporisation and condensation of Group III oxides. It is known from mass-spectrometric studies² that the suboxides M_2O (M = Ga, In, Tl) are present in the vapour above samples of M_2O_3 . However, apart from a brief communication describing the low-resolution vapour-phase i.r. spectra³ of Ga_2O and In_2O , and an electron-diffraction study⁴ of Ga_2O and In_2O , the interpretation of which has recently been questioned,⁵ little is known about these species, and no force-constant data are available.

When the vapour species present above heated Ga_2O_3 are trapped in a nitrogen matrix at 15° K, the i.r. spectrum shows an intense band at 809.4 cm.⁻¹. ¹⁸O-enrichment gives rise to only one additional band at 768.5 cm.⁻¹ and the relative intensity of these two bands reflects the original ¹⁶O:¹⁸O isotopic distribution. This molecular species evidently contains only one atom of oxygen. It cannot be diatomic GaO, since Ga¹⁶O is known⁶ to absorb at *ca*. 755 cm.⁻¹, and on the basis of the mass-spectrometric data,² can only be Ga₂O. Similar results were obtained for the In/O and Tl/O systems, and the frequencies observed are listed in the Table. A number of very weak bands were also present in some spectra: these will be discussed in a later paper. The same results were obtained when oxygen gas was passed over the heated metals, and this proved the most satisfactory method of obtaining ¹⁸O enrichment.

Matrix-isolation studies on the Al₂O₃/Al system⁷ have shown that in the i.r. spectrum of Al₂O, the strongest band is the antisymmetric stretch v_3 . The bands observed in this work are therefore assigned as being the antisymmetric modes of Ga₂O, In₂O, and Tl₂O. For triatomic molecules M₂O with symmetries C_{2v} or $D_{\infty h}$, the zero-order antisymmetric vibration frequency ω_3 is given by:

$$4\pi^2 \,\omega_3^2 = (F_r - F_{rr})(\mu_{\rm M} + 2\mu_0 \sin^2\theta) \tag{1}$$

where $\mu_{\rm M}$ and μ_0 are the reciprocal masses of atoms M and O, and 2θ is the angle M-O-M. F_r is the principal stretching force constant, and F_{rr} is an interaction constant. From equation (1) it is evident that:

$$\left(\frac{\omega_3}{\omega_3^i}\right)^2 = \frac{[\mu_{\rm M} + 2\mu(^{16}\rm O) \sin^2\theta]}{[\mu_{\rm M} + 2\mu(^{18}\rm O) \sin^2\theta]} \tag{2}$$

where ω_3^{i} refers to the isotopically substituted $M_2^{18}O$.

Although this equation holds rigorously only for zero-order frequencies, it may usefully be applied to estimate a value for θ from observed i.r. transitions provided that anharmonicity corrections and matrix shifts are small.7,8

The M-O-M angles given in the Table are calculated

be used to estimate the bond length r_{M-0} via the appropriate Laurie-Herschbach relationship.⁹ The bond lengths listed in the Table have been derived in this way, and correspond closely to the values obtained from electron diffraction.

I.r. absorptions and molecular parameters of Ga ₂ O, In ₂ O, and Tl ₂ O						
		v ₃ M ₂ ¹⁶ O (cm. ⁻¹)	v ₃ M ₂ ¹⁸ O (cm1)	MOM	F_r (mdynes/Å)	$r_{\rm M-O}({\rm \AA})$
M = Ga	This work Previous work	$\frac{809.4 \pm 0.1}{770^{a}}$	$\overset{\textbf{768} \cdot \textbf{5} \pm \textbf{0} \cdot \textbf{1}}{}$	143 ± 5° 140 ± 10°ь 150°с	3.05 ± 0.35	${1.86 \pm 0.03 \atop 1.84 \pm 0.01^{ m b}}$
M = In	This work Previous work	$\begin{array}{r} 722.4 \pm 0.1 \\ \mathbf{680^a} \end{array}$	$ \overset{684\cdot 3}{-} \pm 0.1 $	$135 \pm 7^{\circ} \\ 150 + 10^{\circ \mathrm{b}}$	2.67 ± 0.3	${2 \cdot 04 \pm 0 \cdot 04 \over 2 \cdot 02 \pm 0 \cdot 01^{\mathrm{b}}}$
M = Tl	This work Previous work	$\overset{625\cdot3}{\underline{+}} 0\cdot1$	$591 \cdot 2 \pm 0 \cdot 1$	$131 \pm 11^{\circ}$ $130^{\circ \circ}$	$2 \cdot 12 \pm 0 \cdot 25$	2.19 ± 0.05
^a ref. 3	^b ref. 4 ^c ref.	5				

TABLE

directly from the observed frequencies using equation (2). They correlate well with a statement made by Rambidi et al.⁵ in a re-assessment of the original electron-diffraction data,⁴ although the observed trend may not be significant in view of the approximations involved. The principal force constant F_r may be obtained directly from equation (1) by setting $F_{rr} = \pm 0.1F_r$. This parameter may then

These results indicate that all three fundamental vibrations of Ga₂O, In₂O, and Tl₂O are i.r.-active. A knowledge of these frequencies will provide important thermodynamic data for these high-temperature species and will also allow a complete determination of the quadratic force field.

(Received, July 9th, 1969; Com. 1010.)

- ¹ (a) W. Weltner, jun., and J. R. W. Warn, J. Chem. Phys., 1962, 37, 292; (b) W. Weltner, jun., and D. McLeod, jun., *ibid.*, 1965 42, 882; (c) A. Snelson, J. Phys. Chem., 1966, 70, 3208. ² (a) S. A. Shchukarev, G. A. Semenov, and I. A. Rat'kovskii, Zhur. priklad. Khim., 1962, 35, 1454; (b) R. P. Burns, J. Chem. Phys.,
- ² (a) S. A. Shchukarev, G. A. Semenov, and I. A. Rat kovskii, *Znur. priklaa. Knim.*, 1962, 35, 1454; (b) K.
 1966, 44, 3307.
 ³ A. A. Mal'tsev and V. F. Shevel'kov, *Teplofiz. Vysok. Temp.*, 1964, 2, 650.
 ⁴ N. G. Rambidi and S. M. Tolmachev, *Teplofiz. Vysok. Temp.*, 1965, 3, 487.
 ⁵ N. G. Rambidi and Yu. S. Ezhov, *Zhur. strukt. Khim.*, 1968, 9, 363.
 ⁶ See e.g. G. Herzberg, "Molecular Spectra and Molecular Structure. I.", van Nostrand, Toronto, 1950.
 ⁷ M. J. Linevsky, D. White, and D. E. Mann, *J. Chem. Phys.*, 1964, 41, 542.
 ⁸ See e.g. J. W. Hastie, R. Hauge, and J. L. Margrave, *J. Inorg. Nuclear Chem.*, 1969, 31, 281.
 ⁹ D. H. Herschbach and V. W. Laurie, *J. Chem. Phys.*, 1961, 35, 458.